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Abstract: 

The article established the nonlinear theory to find the solution using a new 

notion of bifurcation known as attractor bifurcation. It determined the 

bifurcation and stability of the solutions of the Boussinesq equations as well 

as the onset of the Rayleigh-Benard convection. In this article we considered 

the theory that comprises the succeeding perspectives. The study initially 

deal with the problem that bifurcates from the trivial solution an attractor 

A_R while the Rayleigh number R intersects the first critical Rayleigh 

number R_C for all physically boundary conditions, despite the multiplicity 

of the eigenvalue R_C for the linear problem. Hereafter, secondly, the study 

measured the bifurcated attractor A_R as asymptotically stable. Finally, the 

bifurcated solutions are also structurally stable when the spatial dimension is 

two, and are classified as a bifurcated solution as well. Furthermore, the 

technical method explained here provides a means, which can be adopted for 

many differen. 
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1.Introduction  

       There are general concerned and a fully understanding in the concept of matter and its 

compositions. It leads with the fully understood of something flows from a hot bodies/objects 

to a cold bodies/objects . The phenomenon of flows is known as “heat.” During the eighteenth 

and the early nineteenth centuries many scientific approach revealed that all bodies consists of 

an invisible fluid within it known to be caloric[1]. Hence this caloric has a variety of properties 

some of which proved to be inconsistent with nature, for instance it has weight and cannot be 

created nor destroyed. However, it flows from hot bodies to the cold bodies and this was 

considered as among the most important feature of it. Therefore, it is important to consider heat 

as a valuable aspect of live[2] 

In a nutshell thermal convection refers to a specific type of convection phenomena where 

temperature differences drive a fluid flow. More precisely temperature variations induce an 

unstable fluid stratification which cause the transition of the fluid from a state of rest to a state 

of motion [3]. The fluid flow may undergo much successive instability, which reduce the spatial 

coherence and the level of predictability of the details of movement progressively. In this case, 

the flow is called turbulent. Few examples of (turbulent) thermal convection are air circulation, 
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solar granulation, oceanic currents and convective flows in the earth’s mantle and stars. 

Transport properties of turbulent convective flow are the object of interest and investigation in 

many field ranging from physical sciences like geophysics, astrophysics, meteorology, and 

oceanography to engineering and industrial applications [4].  

A fluid heated from the bottom and cooled at the surface in a cylindrical container will cause 

convection if the temperature difference (∆T) between the surface and the base plates is at least 

has a critical temperature difference (∆Tc). The phenomenon above is called Rayleigh-Benard 

convection[5], or in short form as RBC. However, convection does not occur in the fluid when 

∆T < ∆Tc, due to viscous and thermal dissipation and will settled in what is called the 

“conducting” or “uniform” solution. Therefore, whenever ∆T large enough, convection is will 

occur as the thermal driving force is significant enough to overcome the dissipative effects of 

thermal conduction and viscosity [6]. Convection will only happen when the dimensionless 

control parameter, the Rayleigh number 

                                       Ra =  
∝gH3

vk
ΔT                                                                                (1.1) 

Attains a critical value Rac, the α is the thermal-expansion coefficient, g is the acceleration due 

to gravity, H represent the fluid thickness layer[7] , where ∆T stand for the temperature ladder, 

κ is for the thermal diffusivity with the ν as the kinematic viscosity. In standard the Rayleigh 

number  shows the characterizes  ratio of the undermining buoyancy force ραg∆T in respect to  

steadying dissipative force νκρ/H3. It can be stated that 

                                       ∈ =  
Ra−Rac

Rac
                                                                                (1.2) 

In order to normalize the degree over a threshold; a certain Rayleigh number is for meant for a 

specific aspect ratio. The dimensionless Prandtl number 

 

                                         Pr =  
v

k
                                                                                      (1.3) 

Gives the properties of the fluid including the dimensionless aspect ratio 

                                           Γ ≡
D

H
                                                                                               (1.4) 

Where D is the diameter and H is the depth of the cylinder, characterizes the geometry. 

It is perfect to identify and noted that a complete nonlinear bifurcation and stability theory for 

this problem must at any rate contain the following aspects:  

a) The bifurcation theorem while the Rayleigh number bisected the initial critical number for 

all the physically boundary conditions,  

b) The asymptotic stability of bifurcated solutions, and lastly 
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c) The pattern or structure and their stability and transitions within the physical space. 

The leading difficulties concerning such a complete theory are two-fold. Initially is due to the 

high nonlinearity of the problem as in other fluid problems, also secondly is due to the lack of 

an approach to handle bifurcation and stability at the eigenvalue of the linear problem has even 

multiplicity[8]. 

The main aim of this research is to reduce the bifurcation problems to the centre manifold 

together with an S1 attractor bifurcation theorem and structural stability theorem for 2D 

incompressible flows to achieve the following objectives: 

1. To classify the solutions in the bifurcated attractor AR. 

2. To study the structure and its transition of the solution of the Benard problem in the 

physical space. 

3. To study the dynamic bifurcation and the structural stability of the bifurcated solutions of 

the 2-D Boussinesq equations related to the Rayleigh-Benard convection. 

2. Methodology  

In this article, we are interested in deriving mathematically rigorous bounds for the heat 

transport when the flow is turbulent. For this purpose, consider a fluid enclosed between two 

rigid parallel and infinitely extended plates separated by a vertical distance h and held at 

different temperatures T = Tbottom and T = Ttop at height 0 and h respectively, with Tbottom 

> Ttop. This model of thermal convection goes under the name of Rayleigh-Benard 

convection[9]. 

In this work, the technique utilized in achieving our objectives was highlighted. the study 

emphasizes the main theorem in respect to attractor bifurcation states that  for m + 1(m ≥  0) 

eigenvalues passing the imaginary axis,the control parameter need to crosses some certain 

critical value.  In this article, we focus on obtaining mathematically rigorous bounds as regard 

heat transport for turbulent flow and this reason[10], using a fluid placed between 2 rigid 

parallel with infinitely extended plates that  are separated by a vertical distance h having 

varying temperaturesT= Tbottom and T = Ttop at height 0 and h accordingly, with Tbottom. 

This type of thermal convection was placed under what is called Rayleigh-Benard 

convection[11]. 

  In the first place, the study depicts that when the  R (Rayleigh number). passes the initial 

critical  value Rc, then the bifurcation occur for Boussinesq equations from the trivial solution 

an attractorAR, having dimension fall between m and m + 1. In this instance, the RC Initial 

critical Rayleigh number is illustrated to serve as the first eigenvalue in terms of the linear 

eigenvalue problem while m +  1 serve as the multiplicity of this eigenvalue  Rc. In respect to 

known outcomes[12], the theorem on bifurcation achieved in this research is for the entire cases 

having multiplicity m+ 1 of the critical eigenvalue Rc for the Benard problem base on any set 

of boundary conditions that are physical. when the trivial solution attains unstable as the R 

passes the value RC , as the AR does’nt possess this trivial solution[13]. 
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Moreover, being an attractor, the bifurcated attractor AR resulted to asymptotic stability 

indicating that it absorbs the entire solutions with primary set of data in the phase space outside 

of the stable manifold[14], in line with co-dimension, of the trivial solution.that in an ideal 

stability theorem should involve all physically significant perturbations and propagate the local 

stability of a chosen class of stable solutions, and presently this purpose are still battling with. 

However, fluid flows are often depended on times. However, bifurcation simulation for steady-

state problems usually gives partial results to the problem, which is not adequate for finding 

the stability problem. Then it seems that the perfect aim of asymptotic stability preceded by the 

foremost bifurcation needs to be best explained by the attractor near, without the trivial 

state[15]. It is our major concern for adopting attractor bifurcation, and we expect to obtain  the 

bifurcated attractor that are stable in this research will impact an ideal stability theorem. Still, 

the other critical aspect of a whole nonlinear theory for the Rayleigh-Benard convection is to 

section the pattern of the solutions immediately after the bifurcation[16]. A standard procedure 

to solve the problem enumerated above is the pattern stability of the solutions when considering 

physical space. Many types of studies have explored to achieve this outcome, and enact a theory 

that is systematic base on pattern stability as well as bifurcation of 2-D divergence-free vector 

fields[17] . This research depicts that for the two-dimensional instances, with any initial data 

that fall outside the stable manifold of the trivial solution, the solution of the Boussinesq 

equations will have the roll structure as is large enough. 

In the actual sense, the mention outcomes for the Rayleigh-Benard convection are obtained by 

utilizing a new approach of dynamic bifurcation, termed attractor bifurcation[18] . The primary 

theorem that discussed the attractor bifurcation describes that as the control parameter passes 

a particular critical value as for m + 1(m ≥  0) eigenvalues intersecting the imaginary axis, 

then the system bifurcates due to a trivial steady state solution to an attractor having dimension 

that fall between m and m +  1, when the critical state is in asymptotic stable state. This 

emergent bifurcation theory completes the stated termed bifurcation theories. There exist some 

essential characteristics of attractor bifurcation[19]. Firstly, the AR does not involve the trivial 

steady state, and is still stable; therefore, it is relevant in physical space. Additionally, the 

attractor involves a series of solutions regarding the evolution equation, containing perhaps 

heteroclinic orbits, steady states, periodical orbits, and homoclinic orbits[. Also, it shows a 

unified suggestion on dynamic bifurcation and this can be employed to various problems 

relating to mechanics and physics. Then,the number of eigenvalues m +1 passing the imaginary 

axis should be an odd number, and the Hopf bifurcation is for the scenaro when m + 1 = 2. 

Although, the updated attractor bifurcation theorem achieved in this research can be adopted 

in the cases involve all m ≥0. 

Notably, the AR, as described earlier, is stable, that is another noticeable issue for other 

established bifurcation theorems[20]. Therefore, we examined the asymptotic stability of the 

crucial state; an additional analysis necessary for the eigenvalues problems is the linearized 

problem. The study employs the Theorem 2 to demonstrate a technique of achieving asymptotic 

stability of the crucial state in problems that contain symmetric linearized equations. This 

theorem is superb; the asymptotic stability of the trivial solution to the Rayleigh-Benard 

problem is demonstrated[21]. This research approved this theorem as it helps find a solution to 
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problems in several issues involving mathematical physics in line with symmetric linearized 

equations. The studies are itemized as follow. Initially, the research revisits of the Boussinesq 

equations and their respectful mathematical setting, likewise identifies some predetermine 

existence and uniqueness outcomes of the solutions. The overall work was summaries as 

enumerated in the next section where the primary attractor bifurcation theory form [22].the 

subsequent section in this research employ Theorem 2, as regard the asymptotic stability for 

the critical state problems in an evolution model having symmetric linearized equations. It was 

stated and also proved the main attractor bifurcation outcomes using the Raleigh-Benard 

convection[23]. 

 

3.  Preliminary Outcomes (Boussinesq equations and their corresponding mathematical 

setting)   

3.1 Boussinesq equations 

The Boussinesq equations  depicts a model in the large scale atmospheric which include 

oceanic flows that determine cold fronts as well as the jet stream. 

∂u

∂t
+ (u . ∇) u − v∆u + ρ0

−1∇p =  −gk[ 1 − α (T − T0)]                           (3.1) 

∂T

∂t
+ (u . ∇) T − k∆T = 0                                                                                       (3.2) 

div u = 0                                                                                                                    (3.3) 

Where v, k, α, g all represent constant values, and u = (u1, u2, u3) refers to the velocity field, 

p  denote pressure function, T stand as the temperature function, T0 is the constant at the 

beneath surface temperature at x3 = 0 and k = (0, 0, 1) then the unit vector is shown in the x-

direction. 

In order to turn  the equations to non-dimensional, we use the following expressions: 

x = hx′, 

t = h2t′/k, 

u = ku′/h, 

T = βh(
T′

√R
) + T0 − βhx3

′ , 

p = ρok2p′/h2 + po − gpo(hx3
′ + αβh2(x3

′ )2/2, 

pr = v/k 
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For this point, the Rayleigh number R is determine by equation (3.1), and pr  =  ν/κ stand for 

the Prandtl number. By exonerating the primes, the equations (3.2) to (3.4) can be restructured 

in the format below. 

1

pr
[
∂u

∂t
+ (u · ∇ )u + ∇p] − ∆u − √RTk = 0                    (3.4) 

∂T

∂t
+ (u · ∇ )T − √Rv3 − ∆T = 0,                                       (3.5) 

 

div v = 0.                                                                                   (3.6) 

Then, the non-dimensional domain for this respect is Ω =  D × (0,1)  ⊂  R3, for which the 

relation D ⊂  R2  is an open set[1]. And the coordinate system is stated as x = (x1, x2, x3) ∈

 R3. 

Though, the Boussinesq equations shown in equations  (3.4) to (3.6) are the required equations 

to explore the Rayleigh B´enard problem given in this research. The initial value conditions 

use for their complement: 

                           (u, T) = (u0,  T0)        at t = 0                                                                     (3.7) 

Hence, boundary conditions are required both at the top and the bottom as well as the lateral 

boundary ∂D × (0,1),  and the top and bottom boundary will be (x3  = 0 ,1), whichever the 

so-called rigid or free boundary conditions are given: 

                      T = 0, u =  0 (rigid boundary),                                                                    (3.8)  

                      T = 0, u3 = 0 ,   
∂(u1,u2)

∂x3
=  0 (free boundary).                                       (3.9) 

Mostly various combinations are utilized at the top and beneath boundary conditions in vary 

physical setting which includes the system of free-rigid, rigid-rigid, free-free, rigid-free and 

free-rigid. likewise, for the lateral boundary ∂D × [0,1], is commonly employed one of the 

highlight boundary conditions as in[24]: 

1. The Periodic condition: 

(u, T)(x1 + k1L1, x2 + k2L2, x3) = (u, T)(x1, x2, x3)                        (3.10) 

As for any k1, k2 ∈ Z. 

2. The Dirichlet boundary condition: 

u = 0,   T = 0   (Or 
∂T

∂n
= 0 ) ;                                                                   (3.11) 

3. The Free boundary condition: 
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T = 0,   un = 0   (Or 
∂ur
∂n

= 0 ),                                                          (3.12) 

For which n and τ are the unit normal as well as tangent vectors on ∂D × [0,1] accordingly, 

and un  =  u · n, ur  =  u · τ. 

In order to minimize, the research will continue with this set of boundary conditions, and the 

entire outcomes hold true even for all other combinations of boundary conditions. 

{
T = 0,   u = 0               at x3 = (0, 1) 

(u, T)(x1 + k1L1, x2 + k2L2, x3 t) = (u, T)(u, t)
                       (3.13) 

As for any k1, k2 ∈ Z. 

 

4. Dynamic Bifurcation and Stability in the Rayleigh-Benard Convection 

The significant milestone here is to try to demonstrate Rayleigh- Benard convention in terms 

of nonlinear theory by a new model of bifurcation, termed AR (attractor bifurcation), and the 

respectful theories in the past studies [25]. all these are in line with the three features of a 

complete theory for the issue discussed along with the main idea with the techniques to employ. 

4.1 The Dynamic bifurcation for the nonlinear progression equations: 

As for this section, we have to apply some findings from the past study on dynamic bifurcation 

of abstract nonlinear evolution equations which had been suggested by many scholars 

particularly the one done by the authors in [26], which is required in this article for Benard 

problem.  This section was structured to determine a formula or model for proving dynamic 

bifurcations for complications that involve symmetric linear operators. 

4.2. Attractor bifurcation 

 By assuming H and H1 to be 2 Hilbert spaces, then  H1 →  H to be a compressed and compact 

insertion[2]. This works used the resulting nonlinear evolution equations. 

                                         
      δy

δx
= LβY + G(Y, β)                                                                     (4.1) 

                                             Y (0) =  Y0                                                                                     (4.2) 

Where Y: (0,∞) ⟶ H and represent  the unknown function, β є ℝ as the system parameter, 

then, Lβ: H1 →  H are parameterized linear that completely continuous fields which constantly 

depending on λ ∈  R1, that satisfy the following equations: 

Lλ = − A + Bλ is a sectorial operator,  

A : H1 → H a linear homeomorphism,                                                                    (4.3)                                   

Bλ : H1 → H the parameterized linear compact operators. 
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It is convenient to notices in some past studies [27],;  that Lβ gives an analytic semi-group as 

{etLβ}t ≥ 0. so, is possible to define fractional power operators Lβ
∝  for any 0 ≤ ∝ ≤ 1 having 

its domain H∝ = D(Lβ
∝) in such that H∝1 ⊂ H∝2 if α1 >  α2, and H0 = H. 

likewise, this research will consider that the nonlinear terms G(y, β): H∝  → H for some 1 >

 α ≥  0 are belong to the family of parameterized Cr bounded operator (r ≥ 1) continuously 

depend on the parameter λ ∈  R1, for which 

                                                G(y, β) = 0(‖y‖H∝)                                                                   (4.4) 

In this illustrations, this research have what to do with the sectorial operator Lβ = −A + Bβ 

for which a real eigenvalue sequence there exist {ρk} ⊂ R1 and an eigenvector 

 sequence of {ek} ⊂ H1 of A: 

Aek = ρk
ek                           

                                                      0 <  ρ1  <  ρ2  < ⋯                                                            (4.5) 

                                                      ρk →  ∞ (k →  ∞)                                  

for which {ek} is an orthogonal basis of H. 

So,  as for the compact operator Bβ ∶  H1  →  H, this work will still presume that there will be 

a constant 0 < θ < 1  in such that  

Bβ: Hθ  →  H  Bounded, ∀ λ ∈  R1                            (4.6) 

Let this be {Sβ(t)}t ≥ 0  an operator semi-group formed by the equation (4.1) that delight in 

the properties. 

For any t ≥ 0, Sβ(t): H →  H is a linear continuous operator, 

Sβ(0)  =  I ∶  H →  H  for the identity on H, and 

Then, for any t, s ≥ 0, Sβ(t + s) = Sβ(t) · Sβ(s) 

We can say, the solution of equation (4.1) and equation (4.2) can be articulated as 

y(t) = Sβ(t)y0,       t ≥ 0. 

Definition 4.1. A set Σ ⊂ H is called an invariant set of (4.1) if S (t) = Σ for any t ≥ 0. An 

invariant set Σ ⊂ H of (4.1) is said to be an attractor if Σ is compact, and there exists a 

neighborhood U⊂ H of Σ such that for any ϕ ∈ U we have 

limt→∞distH(u (t,φ ) = 0                                    (4.7) 

The largest open set U satisfying (4.7) is called the basin of attraction of Σ.            

Definition 4.2. 
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We say that the equation (4.1) bifurcates from (u,λ) = (0, λ0) an invariant set Ωλ, if there exists 

a sequence of invariant sets {Ωλn} of (4.1), 0 ∉ Ωλn such that 

limt→∞λn = λ0 

Lim    max |x| = 0. 

n→∞ x∈Ωλn 

If the invariant sets Ωλ are attractors of (4.1), then the bifurcation is called attractor bifurcation. 

 

1. If Ωλ are attractors and are homotopy equivalent to an m –dimensional sphere Sm, then 

the bifurcation is called Sm–attractor bifurcation 

 

invariant set Ωλ, if there exists a sequence of invariant sets {Ωλn} of (4.1), 0 ∈/ Ωλn such that 

Lλx = α1x − α2 y 

Lλy = α2x − α1 y 

Now let the eigenvalues (counting the multiplicity) of Lλ be given by 

β1(λ), β12 (λ),··· , βK (λ) ∈C, 

where C is the complex space. Suppose that 

Reβi = {

< 0,                λ <  λ0  
= 0,                 λ =  λ0  
> 0,                 λ > λ0  

            (1≤ i ≤ m + 1)               (4.8) 

Reβi (λ0) <0,                  ∀m+ 2 ≤ j                                                   (4.9) 

Let the eigenspace of Lλ at L0be 

E0 = U1≤ i ≤ m +1{uϵH1|(Lλ0 − βi(λ0  ))
k}   u =0,  K =1.2……}  

It is known that dim  E0= m +1. The following dynamic bifurcation theorems for the (4.1) were 

proved in [28].  

Theorem 4.3 (Attractor Bifurcation, [28]). Assume that the conditions (4.3), (4.4), (4.8) and 

(4.9) hold true, and u =0 is a locally asymptotically stable equilibrium point of (4.1) at λ - λ 0 

Then the following assertions hold true.  

1. (4.1) bifurcates from (u,λ) = (0,λ0) an attractor Aλ for λ>λ0, with m ≤dim Aλ ≤ m +1, 

which is   

connected as m >0;                              

2. the attractor Aλis a limit of a sequence of (m +1)–dimensional annulus Mk with Mk+1 ⊂Mk;                               

especially ifAλ is a finite simplicial complex, then Aλ has the homotopy type of Sm;         
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         3.For any uλ ∈Aλ, uλ can be expressed as      

                     uλ = vλ + o(‖vλ‖H1),       vλ ∈ E0: 

2. If G : H1 → H is compact, and the equilibrium points of (4.1) in Aλ  are finite, then we 

have the index formula 

∑ Ind[−(Lλ + G), ui] = { 
2,                         if m = odd                   
0,                         if m =  even                

ui∈Aλ

 

5. If u =0  is globally stable for (4.1) at λ = λ0, then for any bounded open set u ⊂ H with 0 ∈ 

u there is an ε>0 such that as λ0 <λ<λ0+ ε, the attractor Aλ bifurcated from (0, λ0) attracts U/ T 

in H, where T is the stable manifold of u =0 with co-dimension m +1. In particular, if (4.1) has 

global attractor for all λ near λ0, then the ε here can be chosen independently of u 

5. Attractor bifurcation of the B´enard problem: 

5.1. Main theorems  

The linearized equations of (3.4)-(3.6) are given by 

,     {

−∆u + ∇p − √RTK = 0

−∆T − √Ru3 = 0,

div = 0,

                                                                                     (5.1) 

                                                                 

where R is the Rayleigh number. These equations are supplemented with the same boundary 

conditions (3.13) as the nonlinear Boussinesq system[2]. This eigenvalue problem for the 

Rayleigh number R is symmetric. Hence[27], we know that all eigenvalues Rk with 

multiplicities mk of (5.1) with (3.13) are real numbers, and 

                                 0 < R1 < ··· < Rk < Rk+1 < ··· .                                             (5.2) 

The first eigenvalue R1, also denoted by RC = R1, is called the critical Rayleigh number. Let 

the multiplicity of RCbe m 1 = m +1 (m ≥ 0), and the first eigenvectors  Ψ1= (e1 (x), T1),··· 

, Ψm+1 = (em+1, Tm+1) of (5.1) be orthonormal: 

                       .⟨ψi, ψj⟩H = ∫ ⌈ ei . ej + TiTj⌉dx = δijΩ
 

For simplicity, let E0. be the first eigenspace of (5.1) with with (3.13) 

                      E0 = {∑ αk ψk ⃒αkϵℝ, 1 ≤ k ≤ m+ 1M+1
K=1 }                                          

 (5.3) 

The main results in this section are the following theorems. 

Theorem 5.1. For the B´enard problem (3.4-3.6) with (3.13), the following assertions hold true. 
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1. When the Rayleigh number is less than or equal to the critical Rayleigh number: R ≤ 

RC the steady state (u) = 0 is a globally asymptotically stable equilibrium point of the equations. 

2. The equations bifurcate from ((u, T),  R ) = (0, RC) an attractorAR for R > RC, with m ≤ 

dimAR ≤ m + 1, which is connected when m > 0. 

3. For any (u , T) ∈AR, the velocity field u can be expressed as 

                  u = ∑ αk  ek
m+1
k=1 + 0 (∑ αk ek

m+1
k=1 )                             (5.4) 

 

where ek are the velocity fields of the first eigenvectors in E0. 

4. The attractor AR has the homotopy type of an m -dimensional sphere Sm provided AR 

is a finite simplicial complex. 

5. There are an open neighborhood u ⊂ Hof (u, T) = 0 and an ε > 0 such that as RC < R < 

RC + ε, the attractor AR attracts u / T in H, where T is the stable manifold of (u, T) = 0 with co-

dimension m + 1. 

6. Remarks on topological structure of solutions of the Rayleigh-B´enard problem 

As we mentioned before, the structure of the eigenvectors of the linearized problem (5.1) plays 

an important role for studying the onset of the Rayleigh-B´enardconvection. The dimension m 

+1 of the eigenspace E0 determines the dimension of the bifurcated attractor  AR as well[1]. 

Hence in this section we examine in detail the first eigenspace for different geometry of the 

spatial domain and for different boundary conditions. 

6.1. Solutions of the eigenvalue problem. 

 Hereafter, we always consider the B´enard problem on the rectangular region: Ω = (0, L1) 

×(0, L2)× (0,1), and the boundary condition taken as the free boundary condition 

,u. n = 0 ,               
∂u.t

∂n
= 0 on ∂Ω                                                                        (6.1) 

T = 0 at x3= 0,1,                                                                          (6.2) 

dT

dn
= 0 at x1= 0,L1    or        x2=0, L2                                                      (6.3) 

For the eigenvalue equations (5.1) with the boundary condition (6.1)—(6.3), we take the 

separation of variables as follows 

,{

(u1. u2) =  
1

a2
(
∂f(x1.x2)

∂x1
 ,
∂f(x1.x2)

∂x2
  )

dH(X3)

dx3

u3 = f(x1, x2)H(x3)                                   

T = f(x1,, x2)α(x3)                                      

                                                        (6.4) 

where  a2> 0 is an arbitrary constant. 

It follows from (5.1) with (6.1)—(6.3) that the functions f, H, α satisfy                 
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{
 
 

 
 −∆1f = a

2f,                    
∂f

∂x1
= 0        at x1 = 0, L1

∂f

∂x2
= 0         at x2 = 0, L2

                                                                           (6.5) 

And 

 

         {
(
d2

dz2
− a2)

2

   H = a2  λα,

(
d2

dz2
− a2) α = −λH,      

                                                                   (6.6) 

                                           

supplemented with the boundary conditions 

 

           {
φ(0) =  φ(1) = 0 ,                                    

H(0) = H(1) = 0 , H″(0) = H″(1) = 0
                                                             

(6.7) 

.                       

It is clear that the solutions of (6.5) are given by 

        {
f(x1, x2) = cos(a1x1) cos(a2x2)                  

a1
2 + a2

2 = a2, (a1, a2) = k1π/ L1, k2π/L2
                                      (6.8) 

, 

for any  k1, k2 = 0,1… .. 

Let a1
2 + a2

2=a2.It is easy to see that for each given a2, the first eigenvalue λ0(a) and the 

eigenvectors of (6.6) and (6.7) are given by 

 

  {
λ0(a) =

(π2+a2)
3/2

a
                                 

(H, α) = (sin  πx3,
1

a
√π2 + a2sin πx3

                                                        (6.9) 

                         . 

It is easy to see that the first eigenvalue λ1= √RC of (5.1) with (6.1)—(6.3) is the minimum of  

λ0 (a): 
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RC=

min

a2=a1
2+a2

2   λ0
2(a)                                      

=mink1,k2∈𝕫
[π4+(1

k1
2

L1
2+

K1
2

L2
2)

3

/(
k1
2

L1
2+

k2
2

L2
2)]

                                                                    (6.10)  

Thus the first eigenvectors of (5.1) with (6.1)—(6.3) can be directly derived from (6.4), (6.8) 

and (6.9): 

  ,

{
 

 
u1=−

a1π

a2
sin(a1x1) cos(a2x2) cos(πx3)

u2=−
a2π

a2
cos(a1x1) sin(a2x2) cos(πx3)

u3=cos(a1x1) cos(a2x2) sin(πx3)            

T=−
1

a
√π2+a2 cos(a1x1) cos(a1x2)sin (πx3)

                                                                                       (6.11). 

where a2 = a1
2+a2

2  satisfies (6.10)  

By Theorem 5.1, the topological structure of the bifurcated solutions of the B´enard problem 

(3.4–3.6) with (6.1)—(6.3) is determined by that of (6.11), and which depends, by (6.10), on 

the horizontal length scales L1and L2. Namely, the pattern of convection in the B´enard 

problem depends on the size and form of the containers of fluid[1]. This will be illustrated in 

the remaining part of this section. 

6.2. Roll structure. 

 By (6.10) and (6.11) we know that when the length scales  L1and L2 are given, the wave 

numbers k1 and k2 are derived, and the structure of the eigenvectors u of (5.1) are determined. 

Consider the case where 

L1 = L2 = L, and      0 < L2 <
2−21/3

21/3−1
≃ 3                                                 (6.12) 

We remark here that L = hL1/h  is the aspect ratio between the horizontal scale and the vertical 

scale of the domain. In this case, the wave numbers (k1,K2) are given by 

(k1k2) =(1,0) and (0,1), 

and the eigenspace E0 defined by (5.3) for the linearized Bousinesq equation (5.1) with 

boundary conditions (6.1-6.3) is two-dimensional and is given by 

E0 = {α1ψ1+ α2ψ2⃒α1α2 ∈ R} ,  

Where 

ψI = (eiTi)         i = 1,2      

e1 = (0,−Lsin (
πx2
L
) cos(πx3) , cos (

πx2
L
) sin(πx3) 

e2 = (0,−Lsin (
πx2
L
) cos(πx3) , cos (

πx2
L
) sin(πx3) 

T1 = √L2 + 1 cos (
πx1
L
) sin(πx3) 
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T2 = √L2 + 1 cos (
πx2
L
) sin(πx3) 

 

When α1, α2 ≠ 0, the structure of φ = α1ψ
1 + α2ψ

2 ∈ E0 is given schematically  

by Figure 6.1 (a) -(d). 

                                                         

( a)                                                                                           (b ) 

                                          

( c)                                                                                                        (d ) 

Fig. 6.1. Roll structure: (a) Flow structure on 𝐙 = 1, (b) flow structure on 𝐱 = 1 or 𝐲 = 0, 

(𝐜) an elevation of the flow, and (d) flow structure in the interior of the cube. 

The roll structure of φ = α1ψ
1 + α2ψ

2∈ E0 has a certain stability, although it is not the structural 

stability, i.e. under a perturbation the roll trait remains invariant; we shall report on this new 

stability elsewhere. 

Furthermore, the critical Rayleigh number is 

 Rc =
π4(1+L2)3

L4
                                                      (6.13) 

By Theorem 5.1, we have the following results. 

1. When the Rayleigh number R ≤ RC, the trivial solution ∅= 0 is globally asymptotically 

stable in H; 

2. When the Rayleigh number RC,  < R < RC,  + ε for some ε > 0, or when the temperature 

gradient satisfies 
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kv

gα
 
π4(1+L2)3

(Lh)4
 < β =

T0−T1

h
<

kv

gα
 
π4(1+L2)3

(Lh)4
+ ε1             (6.14) 

the B´enard problem bifurcates from the trivial state ∅ = 0 an attractor AR  with 1 ≤ dimAR ≤ 

2. 

3. All solutions in AR  are small perturbations of the eigenvectors in E0, having the roll 

structure. 

4. As an attractor,ARattracts H− T, where T ⊂ H is a co-dimension 2 manifold. Hence,  AR 

is stable in the Lyapunov sense. Consequently, for any initial value φ0 ∈ H − T, the solution 

SR(t)φ0 of the Boussinesq equations with (6.1) — (6.3) converges to AR, which approximates 

the roll structure. 

Remark 6.1. Since the eigenvector eigenspace E0 has dimension two, the bifurcated attractor 

AR has the homotopy type of cycles1. In fact, it is possible that the bifurcated attractor is S1. 

Since the spaces E1= {( u,θ) ∈ H1 | u1 = 0} and E2 = {( u, θ) ∈   H1|  u2 = 0} is invariant for 

the equation (5.1), the bifurcated attractor Σ contains at least four singular points. If Σ =s1 , 

then Σ has exactly four singular points, and two of which are the minimal attractors see ;  [1]. 

7. Conclusion  

      In this article we tried as we mentioned before to clarify the structure of the eigenvectors 

of the linearized problem in which this study plays an important role and studying the onset of 

the Rayleigh-B´enard convection. The dimension m+ 1 of the eingenspace E0 regulates the 

dimension of the bifurcated attractor  AR as well. However, the thesis will further explain by 

examine the detail of the first eingenspace for different geometry of the spatial domain and for 

different geometry and boundary condions. 
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